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Rohling’s Interpretive Method for Neuropsychological
Case Data: A Response to Critics

Martin L. Rohling,1,3 L. Stephen Miller,2 and Jennifer Langhinrichsen-Rohling1

In the September 2001 issue of Neuropsychology Review Miller and Rohling published a description
of the Rohling Interpretive Method (RIM). These authors indicated that the RIM could be used to
analyze an individual patient’s test results obtained from a flexible neuropsychological battery. Two
critiques of the RIM were submitted (Palmer, Appelbaum, & Heaton, 2004; Willson & Reynolds,
2004), both of which are printed in the current issue. This paper is a response to these two author groups
concerns about the clinical and psychometric feasibility of the RIM. We provide both psychometric
theory and data analyses to refute each of the two author groups’ main objections. We conclude
with a recommendation that neuropsychologists adopt the RIM for use in their day-to-day practice
to improve their diagnostic accuracy and treatment planning skills. The main reason for use of the
RIM is to avoid several common errors in clinical judgment that have been well documented in the
literature (e.g., Dawes, Faust, & Meehl, 1989).

KEY WORDS: neuropsychological assessment; flexible battery; clinical judgment; case data analysis; Rohling’s
Interpretive Method.

In the September 2001 issue of this journal, we pub-
lished a method of individual data interpretation (Miller
and Rohling, 2001) called the Rohling Interpretative
Method (RIM). The method has also been described in a
recent book chapter (Rohling et al., 2003). As a reminder,
the steps of the method are summarized in Table 1. Our
main purpose for developing the RIM was to address
problems noted in the literature when interpreting data
obtained in an assessment of an individual patient.

The preceding two critiques of the RIM by Willson
and Reynolds (2004) and Palmer et al. (2004) concluded
that the statistical and interpretative problems they have
identified are of sufficient magnitude that the method
should not be used at this time by clinicians who are as-
sessing individual patients. We do not believe this to be the
case, as we are able to adequately respond to each of the
concerns raised by these two critiques. This is the purpose
of the current paper. For convenience, we respond to both
critiques simultaneously, as the main criticisms generated
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by these two author groups often overlapped. Specifically,
there were eight substantive concerns identified. Each is
listed below.

1. The RIM’s suggested method of calculating stan-
dard deviations (SDs) for both global summary
statistics and cognitive domain scores is in error.
Since many of the remaining steps of the RIM
depend on the use of these SDs, this error is mag-
nified in the subsequent steps.

2. Use of the RIM will result in more diagnostic
false-positives then traditional clinical judgment.
Specifically, Palmer et al. (2004) expressed con-
cern that we failed to distinguish “statistical sig-
nificance” from “clinical significance” and that
our failure to make such a distinction is a critical
error in our system.

3. Clinicians who use the RIM will idiosyncratically
assign test scores to cognitive domains, resulting
in low interrater reliability in RIM analyses and
diagnoses.

4. The RIM recommends factor loadings of test
scores on domains be unit weighted, which intro-
duces error to the analysis. Willson and Reynolds
(2004) suggested that many test scores load on
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Table 1. Steps to Rohling’s Interpretive Method (RIM) for
Neuropsychological Case Data

Summary statistics: Steps 1–17
1. Design and administer a flexible test battery.
2. Estimate premorbid general ability (EPGA).
3. Convert test scores to a common metric.
4. Assign each test’s scores to domains.
5. Calculate domain means, standard deviations,

and sample sizes.
6. Calculate test battery means.
7. Calculate probabilities of heterogenity.
8. Determine categories of cognitive impairment.
9. Determine the percentage of test scores that fall

in the impaired range.
10. Calculate effect sizes for all domains and

TBM scores.
11. Calculate confidence intervals for all domains

and TBM scores.
12. Determine the upper limit necessary for

premorbid performance.
13. Conduct one-sample t tests on each type

of mean generated.
14. Conduct a between-subjects ANOVA with domain means.
15. Conduct a power analysis.
16. Sort test scores in ascending order.
17. Graphically display all of the summary statistics.

Interpretation: Steps 18–24
18. Determine the test battery’s validity.
19. Determine if psychopathology influenced test scores.
20. Use test battery means to determine if impairment exists.
21. Determine current strengths and weaknesses.
22. Examine scores from noncognitive domains.
23. Explore low power comparisons for Type II errors.
24. Examine the response operating characteristics of

sorted T -scores.

multiple cognitive domains and that the assign-
ment of scores to domains, as well as the appropri-
ate weights used on those domains, is dependent
on the battery of tests administered to the patients
whose test scores are being examined.

5. The RIM recommends that multiple measures be
used to generate composite scores, which, accord-
ing to our critics, will result in less rather than
more accurate estimates of the cognitive domains
of interest.

6. The RIM uses a general ability factor (i.e., Esti-
mate of Premorbid General Ability or EPGA) to
represent premorbid functioning for all cognitive
domains. According to our critics, this recom-
mendation is not supported by the literature. As
a result, it will result in inaccurate conclusions
regarding the degree of impairment suffered by a
patient in each of the cognitive domains assessed.

7. Norms used to generate T scores will come from
samples that are of undocumented comparabil-

ity. Furthermore, even when norms are used that
were generated from different but roughly com-
parable samples, their format may prohibit ready
comparisons.

8. Use of the RIM will result in an undue inflation of
clinicians’ confidence. Such overconfidence will
result in more error in a clinician’s interpretation
and not less.

We address each of these concerns in turn. We reply
with psychometric theory, as well as by conducting data
analyses. These additional analyses are generated from
four datasets summarized below and described in detail at
the end of this manuscript.4

Dataset 1 consisted of 607 psychiatric inpatients aged
25–34 years, which was a subset of a much larger dataset
of 2,395 inpatients from Edmonton, Alberta. Several anal-
yses from this dataset have been published previously
(e.g., Iverson et al., 1999, 2001; Iverson and Green, 2002).
The dependent variables were all subtests and summary
scores of either the WAIS (150 patients) or WAIS-R (457
patients).

4Dataset 1: Used by permission from Dr Paul Green, Edmonton, Alberta,
Canada. Two-thousand three hundred and ninety five psychiatric inpa-
tients were generally suffering from significant psychopathology. Two
subgroups from this sample consisting of the age group 25–34 years
were used in our analyses —457 patients with complete WAIS-R proto-
cols, and 150 patients with complete WAIS protocols. Restriction to this
age group allowed subtests recorded in the dataset to be age-adjusted.

Dataset 2: Used by permission from Dr Paul Green. Nine-hundred
and four outpatients seen for neuropsychological assessment in the
context of a Canadian Workers’ Compensation Board claim (n = 376),
a medical disability claim (n = 317) or personal injury litigation (n =
196). Financial benefits for disability were potentially available to or
were being received by the remaining 15 patients referred privately. The
sample included head injured patients and neurological patients (n =
550), psychiatric patients (n = 107; major depression, anxiety disor-
ders, bipolar mood disorders, and psychotic illness), and medical pa-
tients (n = 246; orthopedic injuries, chronic fatigue syndrome, chronic
pain syndrome, fibromyalgia, and other various conditions). Included
in the test battery were 42 neuropsychological dependent variables.

Dataset 3: Used by permission from Dr John Meyers, in Sioux
City, IA. Seventeen-hundred and thirty four inpatients and outpatients
who were primarily referred for neuropsychological assessment.
Included the Meyers Short Battery were 26 neuropsychological
dependent variables.

Dataset 4: Used by permission from Drs Russell Adams, Okla-
homa City, Oklahoma, and David J. Williamson, Clearwater Florida.
One-hundred fourteen patients, with 73 identified as brain injured and
42 identified as “pseudoneurological controls” (i.e., psychiatric pa-
tients). Each patient has a complete HRB along with other measures.
Each patient’s GNDS had also been calculated for the purposes of cross-
validation of this global measure of severity of neurocognitive impair-
ment (Sherer and Adams, 1993). Furthermore, each patient had been
diagnosed as brain-injured or not without reference to psychometric
data, using a variety of medical tests (e.g., CT, EEG, and MRI). Included
in the test battery were 36 neuropsychological dependent variables.
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Dataset 2 consisted of 904 outpatients seen for neu-
ropsychological assessment, all involved in some sort of
medical–legal disability claim. These patients were also
from Edmonton, Alberta. This sample included head in-
jured and neurological patients (n = 550), psychiatric pa-
tients (n = 107), and medical patients (n = 246). Five
symptom validity measures and 43 neuropsychologi-
cal tests were administered. Various analyses also have
been published from subsets of this sample (e.g., Green
et al., 2001; Green and Iverson, 2001a,b; Rohling et al.,
2002 a,b).

Dataset 3 consisted of 1,734 mixed inpatients and
outpatients who had been mostly referred to assess neu-
rocognition and had been given the Meyers Short Battery
(e.g., Pilgrim et al., 1999; and Volbrecht et al., 2000). The
patients were all seen in Sioux City, IA. Again, reports on
subsets of these patients have been published in the liter-
ature (e.g., Meyers et al., 2002a,b; Meyers and Volbrecht,
2003; Volbrecht et al., 2000).

Dataset 4 consisted of 114 patients independently
identified as either brain-injured (n = 73) or psychiatric
(n = 41), from the Oklahoma University Health Sciences
Center, Oklahoma City, OK. Each patient had been admin-
istered a complete Halstead-Reitan Battery (HRB; Reitan
and Wolfson, 1985, 1993), as well as several other mea-
sures. This dataset also has been previously analyzed and
the results published (Sherer and Adams, 1993; Rohling
et al., 2003c Vanderploeg et al., 1997).

CRITICISM 1: ERRORS IN THE CALCULATION
OF THE STANDARD DEVIATIONS

The first criticism of the RIM centers on how we rec-
ommend that clinicians calculate SDs for the relevant sum-
mary statistics. After reviewing both critiques, we believe
that Willson and Reynolds (2004) and Palmer et al. (2004)
misunderstood our recommendations as to how a clinician
is to go about generating these SDs. It is far simpler than
was suggested in their articles. Both sets of critics impres-
sively, and at some length, explained “errors” in our SD
calculations and go on to present statistical procedures that
they believe are required to accurately generate the SDs of
interest. However, after careful reading, it is apparent that
they have focused on group data generated from a number
of patients, rather than on groups of data generated from a
single patient. In essence, we believe that they focused on
what most researchers focus on when examining data (i.e.,
interindividual SDs), compared to that which is of most
interest to practicing clinical neuropsychologists (i.e.,
intraindividual SDs).

We found no error in their statistical reasoning or
the methods they recommended if one were interested in

calculating the interindividual SD for a sample of patients
on a single composite score. However, this is not the SD
that is relevant, nor is it the SD that we recommended
generating when using the RIM. It is also not the SD
which most clinicians would have access. Again, the SDs
of importance in the RIM are the intraindividual SDs, or
the amount of variability within a single patient’s set of
scores, not the amount of variability across a group of
patients on a single composite score.

For illustrative purposes, consider the typical spread-
sheet used to enter data from an empirical study. Columns
are used to record the dependent variables for the par-
ticipants in the study. Rows are used to record a single
participant’s set of scores on each dependent variable. If
a sample of patients had been given a battery of tests
(e.g., WAIS-III), then the columns of the spreadsheet are
usually defined by the subtest scores and the rows of the
spreadsheet are usually defined by the participants in-
cluded in the study. The SD that both critiques focused on
is that which is generated from a single column (i.e., de-
pendent variable) across multiple rows (i.e., participants).
The SDs used in the RIM are best thought of as generated
from multiple columns (i.e., dependent variables) across
a single row (i.e., a participant).

Palmer et al. (2004) used formulas to suggest that
the SD of a composite score shrinks as one adds more
measures. Furthermore, they stated that the SD for an
overall test battery mean could not exceed 9.99 (see lat-
ter). However, what is obvious is that the SD of a battery
of tests for a single patient is independent of the standard
deviation of the measures within that battery across a sam-
ple of patients. Therefore, adding measures to a particular
patient’s test battery to create a composite score for all
patients does not alter the amount of variability across
measures displayed by any one patient, which can and
does exceed 9.99.

To demonstrate, we conducted analyses on Dataset
1. Within this dataset, a subset consisting of 20–34-
year-old patients was selected, as earlier versions of the
Wechsler intelligence test used this normative group to
generate scaled scores for each subtest (Wechsler, 1955,
1981). Within this age range, we analyzed a subset of
457 patients who had been administered the WAIS-R
and 150 patients who had been administered the WAIS.
Within each subset, individual patient’s subtest scaled
scores were summed within two global domains–verbal
subtests (i.e., VIQ) and performance subtests (i.e., PIQ).
Finally, the sum of all scaled scores was used to generate
the Full Scale IQ (FSIQ). These three summary scores
were recorded using age-corrections. To address the SD
criticism, using Dataset 1, we summed each patient’s
scaled scores within the verbal and performance subtests,
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Table 2. Mean and Standard Deviations for the Four Datasets Summary Scores

Mean SD

Interindividual group Interaindividual

Dataset 1 (psychiatric Pts.)
WAIS-R (n = 457) 43.2 7.2 6.8 2.0
WAIS (n = 150) 45.0 9.1 7.4 2.2

Dataset 2 (Green) 44.8 7.3 11.4 2.9
Dataset 3 (Meyers) 42.0 7.3 11.9 2.9
Dataset 4 (HRB-OHSU) 42.8 6.8 10.6 2.4

separately. We then generated an intraindividual SD for
these verbal and performance summary scores. Again, this
is more straightforward than suggested by our critics. The
sample size for the verbal summary score was six subtests
for each patient and for the performance summary score
there were five subtests for each patient. Finally, when
generating this “test battery’s” overall mean (i.e., Overall
Test Battery Mean [OTBM]), we used all 11 subtest scores
included in the WAIS and WAIS-R and typically used to
generate the FSIQ. In essence, the RIM requires the cal-
culation of variability across the 11 scores of the OTBM,
as well as the six scores of the verbal and five scores of the
performance domains. These are the intraindividual SDs
(in this case, three for each patient). Results are shown in
Table 2.

Since the RIM recommends the use of T scores, and
that was the type of norm-referenced score used by both
critiques, we chose to use these scores in our discussion.
Because each patient’s set of scores has their own unique
variability, there are 457 intraindividual FSIQ SDs in the
WAIS-R dataset and 150 intraindividual SDs in the WAIS
dataset. As seen in Table 2, the OTBM interindividual
mean across all patients was 43.2 with a SD of 7.2. Fur-
thermore, the mean of the 457 intraindividual SDs was
6.8, ranging from 2.5 to 13.8. In fact, 7% of the WAIS-
R subset had SDs greater than 9.99. Similarly, using the
150 patients in the WAIS subset, the OTBM interindi-
vidual mean was 45.0 with a SD of 9.1. However, the
mean of the 150 intraindividual SDs was 7.4, ranging
from 2.7 to 15.8. Finally, 10% of the WAIS subset had
SDs greater than 9.99. Palmer et al. (2004) reported that
the SDs of a summary measure, generated from a set of
scores that each had normative SDs equal to 10, could not
be any larger than 9.99 because of the intercorrelation of
test scores amongst one another. As seen in the results
generated from an actual clinical dataset, and using the
correct method of calculating the intraindividual statis-
tics, it is quite possible to generate scores that exceed the
suggested ceiling. Notice that the SD to which both of the
critiques referred is a single SD for the global measure

and not several unique SDs for the patients included in the
sample.

We conducted similar analyses on the three other
datasets to show that these impossible results occur no
matter what type of battery is administered by a clinician.
Figure 1 shows the histograms of the group mean OTBM
for each of the four datasets. Figure 2 illustrates his-
tograms of the group mean intraindividual SD. As shown
in Fig. 1, using Dataset 2, the mean OTBM was 44.8 with
an interindividual SD of 7.3. However, the intraindividual
SD from 858 patients shown in Fig. 2 had a mean of 11.4
(SD = 2.9), which ranged from 4.1 to 23.7. Furthermore,
65% of the sample had SDs greater than 9.99. Dataset 3
had a mean OTBM of 42.0, with an interindividual SD of
7.3. But, the mean intraindividual SD from these 1,731
patients was 11.9 (SD = 2.9), which ranged from 2.5
to 21.5. In addition, 56% of the sample had SDs greater
than 9.99. Finally, using the HRB data from Dataset 4,
we used Heaton et al.’s norms (Heaton et al., 1991) to
calculate regression-based T scores. Again, the mean
OTBM was 42.8, with an interindividual SD from 114
patients of 6.8. This, in fact, is similar to results published
by Heaton et al. (2001) in their study of schizophrenia
patients showing an OTBM (a.k.a. Global Neurological T
Score) of 41.9 and an interindividual SD of 6.5. However,
the mean intraindividual SD from these 114 patients was
10.6 (SD = 2.4) and ranged from 5.6 to 17.0. In addition,
61% of the sample had SDs greater than 9.99. Heaton
et al. (2001) did not present intraindividual SDs in their
article.

As suggested by both critiques, the OTBM’s in-
terindividual SD was indeed less than 10 in each of the
clinical datasets we analyzed. In fact, Palmer et al.’s es-
timated SD for the OTBM (Palmer et al., 2004) of 6.4
was close to the actual SDs generated from datasets two
through four (7.3, 7.3, and 6.8, respectively). However, the
mean intraindividual SD was generally larger, equivalent
across test batteries (11.4, 11.9, and 10.6, respectively),
and had similar variability of the intraindividual SDs (2.9,
2.9, and 2.4, respectively). So, as the reader can see, not
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Fig. 1. Average Overall Test Battery Means (OTBM) for each of the four datasets analyzed.

Fig. 2. Mean intraindividual SD for patients’ OTBMs for each of the four datasets.
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only is it possible for a SD of a composite score to be
greater than 9.99, but, for the majority of patients (58% of
all 2,706 patients) in the four datasets, this was the more
likely outcome. If one looks at the patients described in
the original RIM article (Miller and Rohling, 2001), the
SD was 11.4 for Mr Strokes and 11.7 for Mr Sugar. This
is just as one would expect, considering the results just
presented for these large datasets. The assessment data
for both of these patients’ were published in our origi-
nal article (Miller and Rohling, 2001). Interested readers
could rerun our analyses with these data and would find
that neither of our critics used the correct method for
generating the SD recommended for the RIM. Again, it is
not that their methods are wrong if one wants to calculate
the SD for a sample of patients on a composite generated
from multiple test scores. They just misunderstood what
we recommend as the SD of interest. Clinicians are less in-
terested in the interindividual SD for the single composite
compared to the unique intraindividual SDs for a patient’s
set of scores. One need not know the correlation matrix or
use complicated statistics to generate this intraindividual
SD. Instead, any clinician who has administered a number
of tests to a single patient can easily generate it—which,
in reality, is the situation facing most clinical neuropsy-
chologists and one of our underlying rationales for the
development of the RIM.

There are two common reasons why patients have
larger intraindividual SDs. First, the patient may have suf-
fered a localized brain disorder (i.e., trauma or disease).
Second, the patient may have not put forth consistent
effort across subtests. Patients who fail symptom validity
tests typically have larger SDs, with greater intraindividual
variability across tests. They are also more likely to fail
the RIM heterogeneity check. For example, when exam-
ining the two clinical datasets, each has a unique method
of determining if a patient’s obtained scores should be
considered valid. Dr Green uses the Word Memory Test
(WMT; Green et al., 2002; Green and Allen, 1995b;
Hartman, 2002) and the Computerized Assessment of Re-
sponse Bias (CARB; Green and Allen, 1995a; and Green
and Iverson, 2001a). Dr Meyers uses a series of ability
algorithms that have been shown to be sensitive to inad-
equate effort (Meyers and Volbrecht, 2003). In the Green
dataset, comparing genuine patients to exaggerating pa-
tients, the genuine patients’ mean intraindividual SD was
10.7 versus 13.2, respectively, t(850) = 11.4, p < .0001.
In the Meyers dataset, the results were 10.2 versus 11.5,
respectively, t(454) = 4.82, p < .0001. Finally, when ex-
amining the data from the HRB in the Oklahoma sample,
the mean intraindividual SD for the pseudoneurological
group was 9.7 versus 11.1 for the neurologically impaired
group, t(112) = 3.19, p = .0019.

Despite our critics misunderstanding, we wish to
thank them for presenting their concerns. Obviously, this
point was not as clear as we intended it to be in our orig-
inal paper (Miller and Rohling, 2001). Furthermore, in
our initial recommendations, we suggested that clinicians
use an SD of 10 to calculate effect sizes for each patient
(Step 10B). This makes for a simple rule and approx-
imates the intraindividual differences likely to exist in
most genuine performing patients. However, to increase
precision of a RIM analysis, we now believe that the use of
the patient’s actual intraindividual SD is the more appro-
priate procedure. We revise our original recommendation
by suggesting that clinicians use the most precise SD that
they can. Along these lines, for greater precision clinicians
should use Hedge’s method of calculating an effect size
(g), generating a pooled-SD from the premorbid (EPGA),
and postmorbid (OTBM) variables.

One additional point needs to be made. Willson and
Reynolds (2004) claimed that we confused and inap-
propriately presented an estimate of the standard error
of estimate, rather than the standard error of measure-
ment. This is incorrect, but highlights our poor descrip-
tion of the formula presented in Step 11 to obtain do-
main confidence intervals (CIs). The formula to be used,
and presented correctly in the RIM, remains unchanged:
Smean of X = SX/

√
n (Heiman, 2003, p. 272; Wechsler,

1997, pp. 53–56). This is more accurately defined as the
formula for the estimated standard error of the mean. We
thank Willson and Reynolds (2004) for identifying our
awkward descriptor. Nevertheless, this remains the appro-
priate statistic to generate CI’s and appears to be another
example of our failure to convey our recommended use of
intra rather than interindividual statistics.

Criticism 2: RIM Is Too Sensitive and Statistical
Differences Are Not Clinically Meaningful

A second concern raised by our critics is that the
RIM is overly sensitive to differences in scores that may
be statistically significant, but of little clinical meaning.
According to Palmer et al. (2003), over-responding to
statistical significance obtained via the RIM would result
in encouraging clinicians to label too many patients as
cognitively impaired.

To test this assertion, we used the WAIS-R data
from Dataset 1. To simulate the RIM recommenda-
tions and test the validity of our critics’ concern, we
looked at two different methods of determining statis-
tically significant differences between a patient’s VIQ
and PIQ. The first method used the normative sample
and followed the procedures recommended by Matarazzo
et al., (1988), Sattler (2001), and that which is detailed
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in the WAIS-III Administration and Scoring Manual
(Wechsler, 1997; Tulsky, Zhu, & Ledbetter, 1997). The
Manual method relies on the standard error of the
difference and requires that one know the correlation
between the two composite scores. This is the method
most clinicians use to determine if there is a significant
difference between Verbal and Performance IQs. In con-
trast, the second method used the RIM procedures (i.e.,
unpaired t test) to determine if the obtained differences
between VIQ and PIQ were statistically significant for
an individual patient. To test this, we used a between-
subjects t test, comparing the mean and standard deviation
of the scaled scores for the verbal subtests (n = 6) and the
mean and standard deviation of the scaled scores for the
performance subtests (n = 5). Again, we highlight that,
although we recommend a between-subject t test, we are
actually conducting the t test between two types of data
generated from a single individual. We examined all 457
patients in the 25–34-year-old age group. As expected, the
manual method found 44% of the sample to have signifi-
cant VIQ-PIQ splits. These results are similar to what was
found for the WAIS-III, where 42% of the standardization
sample had significant VIQ-PIQ splits (Wechsler, 1997).
However, using the t test procedure of the RIM on each of
the 457 patients, only 22% of the sample was found to have
significant VIQ-PIQ differences. The contingency results
comparing these two methods are presented in Table 3.
Furthermore, the mean effect size needed to determine
that there was a significant VIQ-PIQ split for an individ-
ual was larger for the RIM method than for the traditional
method. Therefore, contrary to our critics’ concern, the
RIM method appears to be more conservative than the
method recommended in the WAIS-III Manual.

It is important to note that these two methods of
analyzing VIQ-PIQ differences are actually orthogonal to

one another. Variability in the power of each of the two
types of statistical tests will determine which method is
more liberal and which is more conservative. In practice,
however, we assert that the power to detect differences will
usually be greater when using the interindividual method
than when using the intraindividual method. Examining
the results shown in Table 3, the methods overlapped 75%
of the time, with 54% of patients showing nonsignifi-
cant VIQ-PIQ differences and 21% showing significant
differences between VIQ and PIQ. However, the manual
method identified an additional 23% of sample as having
significant VIQ-PIQ differences that were not identified
by the RIM method. Furthermore, the RIM method iden-
tified only an additional 1% of cases as having significant
VIQ-PIQ differences that were not identified by the man-
ual method.

Remember that the method recommended by the
Manual, which uses the results of the interindividual dif-
ferences, uses the group data to estimate the variability
of an individual. The RIM method uses the actual vari-
ability of the individual who was assessed. Because of the
additional statistical power of the large normative sam-
ple in the Manual method, statistically significant differ-
ences obtained in the traditional fashion may not be of
much clinical significance. This is not the case for the
RIM. These data support our contention that the RIM
method, as described in the original manuscript, is gen-
erally more conservative than the traditional method of
determining statistically significant differences using data
from a normative sample. This, in turn, increases the likeli-
hood that the RIM method generates clinically meaningful
information.

Finally, detection of clinically meaningful differ-
ences is a function of base rate, sensitivity, and speci-
ficity. To address these issues, we examined a subset of

Table 3. Contingency Table Between RIM and Manual Methods for Detecting Differences in Domain Scores

Manual method

VIQ-PIQ split VIQ-PIQ split Marginal means for
RIM t test method nonsignificant significant VIQ-PIQ splits

VIQ-PIQ split: nonsignificant n = 248 (54%) n = 107 (23%) n = 355 (78%)
g = 0.38 (.30) g = 0.80 (.41) g = 0.50 (.39)

SS M = 3.9 (2.5) SS M = 13.2 (3.7) SS M = 6.7 (5.2)
VIQ-PIQ split: significant n = 6 (1%) n = 96 (21%) n = 102 (22%)

g = 1.58 (.82) g = 1.70 (.86) g = 1.69 (.85)
SS M = 6.7 (.8) SS M = 19.0 (6.5) SS M = 18.3 (6.9)

Marginal means VIQ-PIQ split n = 254 (56%) n = 203 (44%) n = 457 (100%)
g = 0.40 (.37) g = 1.22 (.80) g = 0.90 (.71)

SS M = 4.0 (2.5) SS M = 15.9 (6.0) SS M = 9.3 (7.4)

Note. g: effect size with pooled SD; Number in parentheses are standard deviations. SS: Standard score differences:
Numbers in the parentheses are standard deviations.
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TBI patients from Dataset 3 (Rohling et al., 2003b). Pa-
tients were assigned to one of six severity groups based
on criteria generated by Dikmen et al. (1995). The sample
contained 291 patients, the majority of which had been as-
signed to the mildest of severity group. There were clear
differences based on severity of TBI. Specifically, for the
six severity groups, the following percentages of patients
were identified as suffering from statistically significant
differences from premorbid functioning using a one sam-
ple t test as recommended by the RIM: 27, 38, 50, 71, 89,
and 83%, respectively. The differences in detection rates
correspond with the differences in the effect size related
to the severity of injury. The magnitude of these effect
sizes were estimated from Dikmen et al. (1995), which
equaled −.02, −.22, −.45, −.68, −1.33, and −2.31, re-
spectively. Only 47% of the entire sample of TBI patients
were found to be suffering from significant neurocognitive
impairment, as measured by the RIM one-sample t test,
using the OTBM and the EPGA as an estimate of the pop-
ulation mean. The minimum effect size detectable with
this 26-item OTBM was −.47. As expected, as the effect
size of severity increases across the groups, the percent of
patients within a group who are identified by the RIM as
suffering from neurocognitive impairment also increases.
Moreover, in Dataset 4, which uses the HRB, results of
the RIM method overlapped with results from the GNDS
of Reitan and Wolfson (1993) 83% of the time. When
the two methods disagreed, it was twice as likely that the
RIM method would have identified impairment when the
GNDS did not as vice versa Rohling et al., 2003c.

These results highlight that the base rate of clinically
meaningful differences, as detected by the RIM method,
is conservative and not liberal, as suggested by our critics.
This is a basic power issue for test batteries. Batteries that
have too few measures are likely to generate more Type
II errors (i.e., fail to reject the null when the alternative
hypothesis of cognitive impairment is true) than Type I
errors (i.e., reject the null and conclude that the alternative
hypothesis of cognitive impairment is true).

CRITICISM 3: LOW INTERRATER
RELIABILITY AND IDIOSYNCRATIC
FINDINGS USING DIFFERENT BATTERIES

Willson and Reynolds (2004) noted, and we concur,
that the RIM was recommended for clinicians using a
flexible battery approach to neuropsychological assess-
ment. The RIM provides a method of obtaining benefits
traditionally associated with fixed batteries, while still
maintaining a flexible approach. However, we certainly
did not recommend that clinicians use “skewed” test bat-
teries, which would result in noncomprehensive assess-

ments of important neurocognitive domains. If such test
batteries are used and then submitted to RIM procedures,
significant differences among the OTBM, Domain Test
Battery Mean (DTBM), and Instrument Test Battery Mean
(ITBM) are likely to emerge.5 For example, if clinicians
only assesses the domains of memory-learning and verbal-
comprehension skills and then generates the three sum-
mary test battery means, they will typically find them to be
discrepant. This warns clinician that there might have been
selective testing of the relevant cognitive domains and is
a strength of the RIM method. Furthermore, the power of
the test of any poorly assessed domain will be rather low,
because the sample size for those domains will be low.
Low statistical power for the assessment of a particular
domain should be another clue that the clinician has not
comprehensively assessed a domain of the patient. The
broader question of the degree to which ethical practice
would support a clinician’s decision to minimally assess
or even fail to assess a particular domain is a question not
addressed by the RIM methodology.

A broader concern evoked by the reviewers is that
clinicians will not agree as to which domains a particu-
lar test result belongs, because there is not a universally
agreed upon factor structure. While there is some validity
to this point, we believe that there is converging evidence
that there are universal domains of cognition. For exam-
ple, Tulsky et al. (2003) recently conducted a series of fac-
tor analyses on the standardization sample of the WAIS-III
and WMS-III. They found that a six-factor solution best
fit the data, similar to the six-factor solution we presented
in our original RIM paper. The factors identified were
(1) Verbal Comprehension, (2) Perceptual Organization,
(3) Working Memory, (4) Processing Speed, (5) Auditory
Memory, and (6) Visual Memory. The only differences be-
tween this domain structure and that which we presented
is that our Memory and Learning factor has been split into
a auditory and visual components and Tulsky et al. (2003)
did not include an executive function factor.

We factor analyzed the WAIS-R data from Dataset
1 and came to a four-factor solution, which included the
same factors found in the WAIS-III standardization sam-
ple with each subtest loading on the same factors that
were generated with the WAIS-III (i.e., VCI, POI, WMI,
and PSI). True, it would be best to try to generate such
a universal domain structure from a meta-analysis of all
available factor analysis studies on this issue. However,
to date we do not have these results. If one wishes to

5When examining the three clinical datasets (i.e., numbers 2,3, and 4),
these Test Battery Means correlated highly with one another, with a
mean coefficient of .97 that ranged from .92 to .99. Furthermore, in
two of the four datasets (i.e., numbers 2 and 4), these global summary
indices were not significantly different from one another in magnitude.
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administer a battery using the WAIS-III and the WMS-
III, along with a few other tests, it is our impression that
we can assume that the factor/domain structure we orig-
inally presented reasonably model the factor structure of
the available data.

Many commonly used flexible battery tests (Lees-
Haley et al., 1996; Sweet et al., 2000) have been included
in a variety of factor analyses and have been empirically
tied to particular domains (e.g., see Leonberger et al.,
1992). Thus, for many, if not most routinely used tests,
domain placement is self-evident. When placement of a
particular test is inappropriate, the RIM provides evalu-
ative information for this with the domain heterogeneity
statistic. High heterogeneity suggests that the clinician
has chosen to load a test on an inappropriate factor.

Finally, we would remind our critics that the OTBM
is independent of domain placement, because all individ-
ual tests are used to calculate this summary score. There-
fore, comparisons between the OTBM and the EPGA are
unaffected by test score domain assignment.

CRITICISM 4: FACTOR LOADINGS ERROR
INTRODUCED BY UNIT WEIGHTING

We spent a great deal of time considering various per-
mutations of the factor analysis concern when designing
the RIM. We concur with our critics that placing test scores
on factors and then unit weighting these scores requires
clinician expertise and judgment. We expect practicing
clinical neuropsychologists to have some command of the
literature. We understood the dangers of this assumption
when we recommended that clinicians, particularly those
already using flexible batteries (which by their nature are
infused with clinical judgments about tests and measure-
ments), use the RIM. Here are a few of our thoughts related
to published factor analytic results and the application of
these results to the RIM.

First, concerning factor analysis, the number of de-
pendent variables assessed in a research sample will have
an impact on the factor structure and loadings (Nunnally
& Bernstein, 1994). The more variables examined and the
less distinct the constructs assessed, the less stable will
be the factor structure and the smaller will be the factor
loadings. Second, factor loadings are influenced by sam-
ple demographics. The more homogeneous a sample (e.g.,
Alzheimer’s patients), the smaller the number of factors
that are generated, the larger will be the factor loadings,
and the less generalizable the results will be to patients
who are not well represented by the sample. Third, the less
construct validity a variable has, the less stable will be the
factor structure and the smaller will be the factor loadings.

For example, Picture Arrangement (PA) of the WAIS-III
loads on two or three domains in the factor analytic studies
detailed in the WAIS-III & WMS-III Technical Manual
(e.g., verbal comprehension, perceptual organization, and
working memory). When PA is included in a factor analy-
sis, it will have smaller factor loadings on any one domain
and these loadings will tend to be less stable than will a
subtest like Vocabulary. Vocabulary loads highly on only
one factor because it is a “purer” measure of a hypotheti-
cal construct (i.e., verbal intelligence) than is PA. Finally,
the closeness with which a distribution of scores adheres
to the assumptions required for parametric statistics (i.e.,
normally distributed, equal variance, and independently
sampled), the more stable will be the factor structure and
the resulting loadings. When these assumptions are vio-
lated, as is often the case with tests like the Boston Naming
Test (BNT; Kaplan et al., 1983), the factor structure be-
comes less stable and the loadings less reliable. All of
these problems with factor analysis are well described
by Nunnally and Bernstein (1994). Given these realities,
variability in factor loadings is to be expected across stud-
ies and samples. This is actually one of the reasons why
we recommended using unit weighting.

We also chose to use unit weights because of the
literature indicating that this is better than relying on clin-
icians’ judgment. For example, research on beta weights
has shown that unit weighting is superior to subjec-
tive weighting in human decision-making (Dawes, 1979;
Dawes and Corrigan, 1974; Meehl, 1997; Wedding &
Faust, 1989). Diagnostic accuracy can be improved only
slightly (approximately 3–5%) by generating more ap-
propriate beta weights (e.g., weighting scores by the nor-
mative sample sizes of each dependent variable or factor
loadings from prior research). When such beta weights
are not available, or when the time and effort required to
incorporate them outweights the limited increase in diag-
nostic accuracy, one should not avoid using unit weighting
because we know that these weights are not as good as they
could be. Failing to use statistical/actuarial procedures be-
cause a clinician does not have the most appropriate beta
weights will result in lower diagnostic accuracy, because
s/he then must rely on less reliable and valid subjective
judgment.

Dataset 1 allows us to estimate the differences in
results obtained if a clinician were to use unit weight-
ing, as we recommend, rather than ideal beta weighting
advocated for by the critics. We conducted four multiple
regression analyses using the 457 patients’ WAIS-R data.
We split the sample in half so that we could assess the
effect of shrinkage on the accuracy of prediction gener-
ated from a single sample. Then, we used patients’ scores
on the verbal subtests and regressed them onto the PIQ.
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This generated ideal weights for this sample. We used
these weights to predict PIQ scores in the second half of
the sample. These were then correlated against actual PIQ
scores in the second half of the sample. We also generated
weights using the second half of the sample, and used
these weights to predict PIQ scores in the first half of the
sample. Finally, we repeated this procedure, except we
used the performance subtest scores to predict VIQ, split-
ting the sample in half and generating the same statistics
as before. The purpose of these procedures was to see how
much variance in factor weights are sample specific, and
the amount of shrinkage one can expect when weights are
cross-validated. This shrinkage error was then compared
to the error introduced by using “unit weighting” rather
than “ideal weighting.” Results indicate that 98% of the
variance accounted for using the ideal weights, after ad-
justments are made for expected shrinkage, is accounted
for by using unit weights. These results support the use of
unit weighting as a substitute for ideal weighting.

Nonetheless, we believe that it is important to re-
mind our critics that the RIM methodology leaves it to
the clinician to decide which domain structure s/he wants
to use for a particular test. For the example patients in
our original article (Miller and Rohling, 2001), it was our
opinion that a 6-factor cognitive solution best modeled
the patients’ data. We believe that the results of Tulsky
et al. (2003) support such a domain structure for these pa-
tients. However, we agree that other patients may be better
modeled by a four-factor solution or some other solution.
We were not attempting to limit a clinician’s ability to
make these decisions. Rather, we have suggested a factor
structure that a clinician might want to consider, which we
believe is reasonably valid for most cases. We elaborated
our discussion of individual users’ decisions regarding
domain structure and test placement in our original paper
(See Miller and Rohling, 2001; RIM Step 4, pp. 13–14).

Our critics also wondered about what the RIM rec-
ommends with regard to whether a test score should be
loaded on multiple factors. The RIM procedure, as cur-
rently stated, does not allow test scores to load on multiple
factors. Instead, we encourage clinicians to use the best
exemplars of particular domains. Clearly, the accuracy of
RIM results is enhanced if clinicians use purer measures
of the relevant constructs. Yet, as Willson and Reynolds
(2003) appropriately point out, good behavioral observa-
tions during assessment may, at times, lead a clinician to
assign a particular test score to a domain that is atypical.
Again, the flexibility of our method allows for this type
of clinical judgment. As a caution, however, we strongly
recommend that whatever domain structure a clinician
decides upon and/or whatever placement of test scores to
specific domains is chosen, that the clinician examine the

validity of his or her decisions. This can often be done both
statistically and by consulting the literature. The RIM het-
erogeneity statistic is helpful here. In addition, in Step 16
of the RIM, the clinician is instructed to sort the patient’s
test scores in ascending order, so that they can be in-
spected for outliers, inconsistencies, and unusual patterns
of performance. Finally, we want to explicitly recommend
great prudence in “floating” tests around to different fac-
tors based on clinical observations. Many psychologists
have written about the dangers of post-hoc judgments and
decisions (Meehl, 1997). As of yet, we have no data as to
the interrater reliability of these types of judgments when
various clinicians use the RIM. This will be an important
area of future research.

CRITICISM 5: MULTIPLE MEASURES RESULTS
IN WORSE ESTIMATES OF DOMAINS

The fifth concern of our critics is that including mul-
tiple measures will actually result in worse estimates of a
domain. This criticism is valid under two conditions. First,
if the clinician knows at the outset which of the multiple
measures is the best predictor of a specific construct. Sec-
ond, if the number of additional measures being combined
with the best measure is too small, the composite score
will not be able to overcome the error introduced by the
addition of measures with low reliability. The degree to
which these two conditions operate in real clinical sit-
uations are empirical questions. We used data from the
457 patients who had been administered the WAIS-R to
address our critics’ concern directly. First, to simulate
the situation of multiple measures of a single construct
we decided to use the subtest scores of the WAIS-R as
multiple estimates of the construct of intelligence (i.e.,
FSIQ). Because we have access to the entire correlational
matrix for this example, we know which subtest is the
best predictor of the summary measure (i.e., Vocabulary).
We also know which subtest is the worst predictor of the
summary measure (i.e., Object Assembly).

Furthermore, since there would be bias in using
WAIS-R FSIQs that were too far from the mean (i.e., 100),
we restricted our sample to those patients whose FSIQ fell
between 97 and 103, or .20 standard deviations from the
population mean. With this information, we constructed
the simulation with the results presented in Table 4 and
illustrated in Fig. 3. As can be seen, when the initial
and best estimator of the construct (i.e., intelligence) was
combined with the poorest estimator, the mean estimate
still improved for the sample. However, the standard er-
ror of the mean difference actually increased. Therefore,
the confidence interval around the prediction increased.
Furthermore, only 1% of the sample’s estimated FSIQ
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Table 4. Percent Improvement With Each Estimation Iteration, With
No Improvement Equaling 50%

Diff. between 1 predictor % Mean absolute SEM of
and additional predictors Improved value of diff improved

1 Predictor (Voc) — 4.99 .47
2 Predictors (1 + OA) 51 4.42 .49
3 Predictors (2 + BD) 70 3.58 .45
4 Predictors (3 + Sim) 70 3.01 .36
5 Predictors (4 + DSp) 81 2.42 .25
6 Predictors (5 + Info) 79 2.53 .26
7 Predictors (6 + PA) 81 2.11 .21
8 Predictors (7 + Comp) 88 2.06 .18
9 Predictors (8 + DSy) 93 1.31 .14

10 Predictors (9 + Arith) 91 1.36 .12
11 Predictors (10 + PC) 93 1.27 .06

improved when the second estimator was added to the
first. The next obvious question then was, “How many
more estimators must be added to the composite before the
combination of estimators brought the confidence interval
below its initial value?” To determine this, we added mea-
sures at random, resulting in the order presented in Table 4.
Using this WAIS-R data, the answer to our question was,
just one more estimator was needed before the confidence
interval shrank below its initial value. Furthermore, for
the most part, the mean estimation continued to improve
as each additional estimator was added to the average.
This, of course, is a worst-case example of this type of
situation; that is the clinician knows the best predictor,
a priori, and adds the worst predictor of the construct as the
second measure. Even under these conditions, integrating
just one additional measure with the initial two measures
provided a better mean estimate and confidence interval
than did the first measure alone. This makes sense if we
think of measures as participants in a research design;

Fig. 3. Estimate of FSIQ based on means of subtest scores, presented
as T scores.

that is, adding participants to a sample will likely pro-
duce a better estimate of the sample mean (i.e., cognitive
construct).

We remind the reader that the conditions above do
not typically exist for most of the domains neuropsychol-
ogists commonly assess. Instead, clinicians are not likely
to know which of several estimators is the best estimator
of a specific construct (i.e., executive functioning may
be estimated by results from the Wisconsin Card Sorting
Test and/or the Category Test). Therefore, any two or
more combinations of estimators is likely to be a better
estimate of a patient’s true score than any single estimator.
Furthermore, this is true whether we are considering the
OTBM, EPGA, or any one of the mean cognitive domain
summary scores.

CRITICISM 6: PROBLEMS WITH USING
EPGA TO ASSESS IMPAIRMENT
IN SPECIFIC COGNITIVE DOMAINS

This is the criticism that concerns us the most and,
in our opinion, has the most legitimacy. Our critics have
brought up an important consideration of statistical re-
gression as it pertains to prediction of another variable.
Specifically, both Palmer et al. and Willson and Reynolds
expressed concern about the relevance of some of the es-
timators we recommended be included in the EPGA, how
these estimators were transformed to a common metric,
and whether this general factor is an accurate estimator of
premorbid ability for specific cognitive domains.

We appreciate their concern, understanding that
when predicting one variable from another the associa-
tion between the two variables influences the accuracy of
the prediction. For example, Sattler (2001) points out that
students’ grades’ correlate only .43 with their WISC-III
FSIQ. Therefore, to predict a specific student’s FSIQ us-
ing only grades would introduces significant error and will
result in a large standard error of the estimate. Clearly, it is
better to take into consideration the relationship between
variables to better determine the validity of the prediction.
When the association between variables is not taken into
account, it is functionally equivalent to assuming that the
variables are perfectly correlated, which is never the case.

However, as reported in our original paper, our con-
ceptualization of the EPGA is not as a predictor of FSIQ.
The EPGA is designed to represent an individual’s pre-
morbid general ability, a substantial portion of which in-
cludes the construct of intelligence, but is not fully encom-
passed by it (Ardila, 1999; Ardila et al., 1998). Just as the
OTBM, DTBM, and ITBM include more constructs than
FSIQ (e.g., executive functioning, memory and learning),
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so too should a premorbid estimate of this construct in-
clude more than just FSIQ. Therefore, we purposefully
did not recommend that a clinician consider regression
to the mean when generating the EPGA from variables
such as class rank. If a clinician were to do this, it would
narrow the scope of the EPGA and lead to inappropriate
conclusions when the premorbid and post-morbid means
were compared. This issue was discussed in the WAIS-
III and WMS-III Technical Manual when examining the
comparison between the “simple-difference method” and
the “predicted-difference method.” It states

One noteworthy limitation of the predicted-difference
method is that when correlations between measures are
low, the range of predicted scores is restricted (i.e., be-
cause of regression to the mean). Berk (1984) summa-
rized the disadvantages of the predicted method, point-
ing out the limitations of imperfect correlations (dis-
crepancies are due to prediction error as well as true
differences) . . . The proper use of the simple-difference
method requires the examiner to determine first if the
difference is statistically significant, and if it is, to deter-
mine how frequently a difference of its size occurred in
the standardization sample (Berk, 1984). These two steps
should be familiar because they are the same ones used to
interpret the difference between WISC-III VIQ and PIQ
scores (Wechsler, 1991).

We expect to conduct such statistical analyses using sev-
eral large samples to determine the base rate of these
differences. We hope that others will do this as well. Such
analyses will generate estimates of the frequency of in-
creasing magnitudes of difference between the EPGA and
any specific domain mean within the normal population.

A more important consideration in responding to this
criticism is to determine if the RIM results in systematic
error in diagnosis. As explained earlier, the statistical pro-
cedures we recommended already err on the side of being
conservative. For example, assume that a patient’s EPGA
was calculated, without using a regression approach, to
be a T score of 40. Furthermore, assume that the patient’s
post-morbid OTBM was 33. This results in a simple dif-
ference of 7 points. If we were to apply some sort of
regression equation to generate an EPGA, the score would
almost certainly move closer to the sample mean of 50.
This might result in an EPGA equal to 43. Consequently,
the difference between the EPGA and OTBM will have
increased from 7 to 10 points. Therefore, the clinician
would be more likely to conclude that the difference was
statistically significant. However, a different outcome oc-
curs when the clinician examines the upper tail of the
sample distribution. Consider a patient whose EPGA was
calculated to be 60 and whose OTBM was calculated to be
53. A regression-based EPGA might result in an estimate
of 57. The difference between these two in this case has

gone from 7 to 4 points. Thus, in these two examples, the
difference between the EPGA and OTBM increased and
at the lower tail, whereas it decreased at the upper tail. In
the head trauma population, for example, the majority of
cases occur at the lower tail of the premorbid distribution
(Annegers et al., 1980; Gordon, Mann, & Willer, 1993).
Therefore, more often than not, by not using a regression
approach we have been statistically more conservative
when examining the majority of TBI patients.

Furthermore, the magnitude of error introduced by
our methods should be considered. The amount a pre-
dicted score regresses to the mean decreases the closer
the predictor is to the sample mean. In our opinion, the
magnitude of the error introduced becomes significant
only when a patient’s true premorbid ability was at least
one standard deviation away from the sample mean. Con-
sidering the systemic error noted above, together with
this factor, we estimate that the RIM might introduce sig-
nificant error for 5% of a sample of TBI patients (i.e.,
premorbidly very high functioning patients who may have
experienced a rather mild TBI).

Considering the alternatives to the RIM recommen-
dations, the literature overwhelming indicates that clini-
cians are not capable of making such statistical corrections
on their own. Any error introduced by the RIM is almost
certainly smaller than that which would be introduced by
the typical low reliability of clinician judgment. Until bet-
ter methods of predicting premorbid functioning across a
variety of cognitive domains (e.g., executive functioning,
memory and learning, attention, and processing speed)
have been developed, we believe that it is prudent to con-
tinue to use the RIM’s current recommendations.

CRITICISM 7: NORMS USED TO GENERATE T
SCORES MAY COME FROM DISSIMILAR
NORMATIVE SAMPLES

Indeed, we are certain that many clinicians who use
the RIM will use norms to generate T scores that are not
equated for many relevant demographic variables (e.g.,
age, education, gender, and handedness). However, this
is not a problem created by following the RIM’s recom-
mendations. Rather it is a preexisting problem for clinical
neuropsychology. The concern noted by our critics is that
when a clinician uses dissimilar normative samples, there
will be greater variability in the distribution of scores (i.e.,
the SDs for the OTBM, DTBM, ITBM), and all other
domain means will increase from that which might be
generated if a clinician used only instruments that were
conormed. Appealing to the concept of power analysis,
such increased “noise” in the system would then require
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that more measures be included in a test battery for signif-
icant results to be revealed. If additional measures are not
added, then the power of the current battery will be low.
The clinician will have to consider that the probability of
making a Type II error might be unacceptably high (i.e.,
the clinician will fail to detect a mild head injury if they
use too few non-conormed measures in the test battery).

However, a method of determining if inappropriate
norms have been used in the RIM analysis is to examine
the heterogeneity statistic for the test battery means and
for each of the domain means. When inappropriate norms
are used to transform raw scores to T scores, the resulting
“ballooning” of the variance will cause the heterogeneity
statistic to be statistically significant. This will warn the
clinician that there might be a problem with the norms
being used.

The degree to which noise is introduced into the
RIM system, because clinicians choose a battery of non-
conormed measures, is an empirical question. To test the
influence of the use of different normative groups of lim-
ited comparability, we ran analyses on Dataset 2. We chose
this dataset because the OTBMs of each patient were
generated from 42 dependent variables (i.e., a large test
battery was administered). Individuals’ data could thus be
split into two sets of 21 test variables each. In this way, two
independent OTBMs could be created from the same pa-
tient. In this example, the 42 variables were split into two
based intentionally on the critics’ concerns. That is, the de-
pendent variables were separated such that no normative
sample was included in both of the OTBM calculations.
We then correlated the results of the two calculations,
which resulted in a coefficient of .81 and accounted for
66% of the variance. The slope of the regression line was
.82 (SE = .027) and the intercept was 9.2 (SE = 1.20).
The mean for OTBM-1 was 45.0 (SD = 7.3) and the mean
for OTBM-2 was 43.6 (S = 7.2). Furthermore, a paired t

test found the OTBMs to be significantly different from
one another, t(501) = 7.12, p < .0001; however; the ef-
fect size for this difference was small (g = .20). These
results simulate the worse case scenario (i.e., what might
happen if a particular patient were to be assessed by Clin-
ician A using one set of norms to generate T scores, and
Clinician B who used an entirely different, and unrelated,
set of norms to generate an OTBM for the same patient).

Some readers may think that a coefficient of .81 is
sufficiently low to raise concern. However, several factors
increase the likelihood of this correlation being smaller
than one would find in reality. First, the test battery used
has been cut in half, thus reducing the reliability of the
original OTBM. Estimating the test–retest reliability co-
efficient that would have been generated with two OTBMs
of 42 variables each would increase the reliability estimate

from .82 to .88 using the Spearman–Brown correction.
Second, because we deliberately split the data so that the
two OTBMs had no overlap in normative samples, our
results truly represents a worst-case condition. In prac-
tice, most flexible battery clinicians administer several
instruments (e.g., WAIS-III), which results in the OTBMs
being generated from “conormed” variables. Finally, even
when clinicians use different norms, they are often ad-
ministering the same instruments (e.g., AVLT or RCFT).
Because of the nature of our simulation, no instrument
used to calculate OTBM-1 was included in our calculation
of OTBM-2. This almost certainly increases the dispar-
ity between the two OTBMs. It is likely that these three
conditions worked together to shrink the relationship be-
tween OTBM-1 and OTBM-2. We expect, in most cases
with real patients assessed by two different clinicians,
that the correlation between the two OTBMs would likely
be greater than.90. Substantiating this point, in Heaton
et al.’s study (Heaton et al., 2001) of patients suffering
from schizophrenia, these authors obtained a test–retest
reliability coefficient of .97 for their Global Neurological
T -Score. Of course, they most likely were comparing the
results of two nearly identical test batteries, rather than
our worst-case scenario.

CRITICISM 8: USING THE RIM WILL RESULT
IN CLINICIAN’S BEING OVERCONFIDENT

Both critiques suggest that clinicians may inappro-
priately instill in the RIM greater confidence in its re-
sults than it is due, and that this is worse than errors
brought about by clinicians’ judgment alone. However,
this is based primarily on their inaccurate assumptions
regarding the use of intraindividual SDs, which we have
already addressed at some length at the outset of this
paper. We hope that our critics will be less concerned
about over-confidence now that we have clarified the use
of intra-rather than interindividual SDs. The degree to
which the RIM would cause clinicians to become over-
confident in their judgments is also an unanswered empir-
ical question. However, a review of the literature would
suggest that, in the absence of empirical methods such as
the RIM, clinicians are overconfident of their judgments
(e.g., Dawes, Faust, & Meehl, 1989; Meehl, 1997). We
would point out that our own experience runs contrary to
the concerns of our critics. We have found RIM results to
have a tempering effect on our initial clinical judgments!
One of the main reasons to use the RIM is that it moves
the clinician away from a hard and fast dichotomous judg-
ment (i.e., brain injured or not; malingering or not). In-
stead, the RIM neuropsychologist can temper his or her
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findings with statistical probabilities. The RIM neuropsy-
chologist also will be able to give estimates of the power
needed to detect differences and will have multiple ways
of comparing current performance to estimated premorbid
abilities. It is our belief that this will help the clinician to
provide a more realistic appraisal of the validity of their
findings.

Last, the reviewers seem to be concerned that if we
add some mathematical rigor to the diagnostic process,
clinician’s will be fooled by “pseudoscience.” However,
clinical abilities remain essential within the RIM. The
RIM relies on the clinician’s ability to establish rapport
with the patient, administering tests in a standardized
fashion, and score the tests appropriately. The RIM then
helps the clinician avoid many common cognitive errors
to which all humans are prone, such as over-focusing
on one piece of information, and/or confirmatory bias.
In our original paper, we gave an example of how the
RIM might detect brain injury that the clinician would
otherwise miss. What we did not show, but could have, is
that the RIM also works in the opposite direction. That is,
at times the analyses will not substantiate a brain injury
that the clinician expected to find. In addition, the RIM
highlights that it is more difficult to detect brain injury in
premorbidly low functioning individuals—thus; a more
extensive battery may be required in these situations. Fu-
ture research is being conducted to demonstrate how the
RIM, versus standard clinical practice, detects cognitive
impairment across the entire range of premorbid func-
tioning. This direction of research is expected to improve
clinical neuropsychological practice to a more thorough
integration of science and practice.

CONCLUSION

At the risk of creating a straw man, if the critics’
arguments were to be adopted wholesale, one could con-
clude

1. tests that are not conormed cannot be adminis-
tered together and interpreted in a meaningful
fashion. They imply that the 85% or so of neu-
ropsychologists who use a flexible battery ap-
proach are generating uninterpretable results.

2. neuropsychologists can only generate global as-
sessments of neuropsychological functioning, as
no available method has generated agreed upon
cognitive domains.

3. estimates of premorbid functioning are not valid.
Therefore, neuropsychologists can never compare
current functioning to some preinjury baseline.

4. clinicians are so “wowed” by mathematics that
they will lose all ability to consider how the find-
ings they have obtained might not be valid. There
is even some suggestion that if we incorporate
decision-making theory and statistics into clini-
cal practice, clinical skills may deteriorate to the
level of obsolescence.

Obviously, these are serious concerns that need con-
tinued empirical attention within our profession. At the
outset, we thank our critics for their very careful review
of our work and for their challenge to us to address a vari-
ety of concerns with our methodology—from statistical,
to status of knowledge in the field, to the role of neuropsy-
chologists as clinicians who, we believe can generate and
interpret statistical data about individual patients. Our de-
sire is to make the RIM a user-friendly method to help
clinical neuropsychologists truly embody the scientist–
practitioner model. We firmly believe that ethical practice
in this field requires excellent clinical skills (e.g., in order
to generate meaningful patient data). In addition, compe-
tent practitioners will follow the literature closely enough
to choose reliable instruments to measure the domains of
importance to them and their patients. In fact, the RIM
is simply trying to make what clinicians already do in
their head, and that which is written in their reports, more
systematic with improved accuracy in their “calculations.”
We hope that our responses to the critiques adequately ad-
dress the concerns generated. Clearly, ours is an evolving
field. We believe the RIM has the flexibility to grow with
advances in measurement, while currently being an im-
portant addition to the practice of all neuropsychologists
who employ a flexible battery approach. We are eager to
conduct more research to test the validity of these beliefs
and our methodology.
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